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1 Introduction

One of the highest-stakes situations of scarcity a society can face is limited healthcare re-
sources in a medical emergency. During COVID-19, emergency rooms were flooded, so
difficult decisions had to be made on which critical patients got ventilators and hospital
beds (Jabakhanji, 2021). Public health agencies also faced a difficult question: Who should
get the vaccine first? In war zones and disaster relief, the scarcity is even more pressing
— often there are simply not enough resources to go around to treat everyone. Faced with
such a pressing situation, it is important to act not only swiftly, but fairly. Since we cannot
help everyone, on what ethical basis do some people get prioritized over others? We will
scrutinize this using the economics approach to distributive justice.

2 Elements of a Triage Problem

2.1 Triage in Practice

Before we try to model this problem, it is important to understand how society already deals
with distributing limited healthcare resources in an emergency. This problem has been so
prevalent throughout history that we have a word for it: triage. At a high level, triage can
be defined as a systematic prioritization of patients based on relevant information. The most
common “relevant information” used to decide on prioritization are two factors: the severity
of the condition and the resources needed to treat the condition, but one can think of others
such as one’s willingness and ability to pay for the resources.

2.1.1 Edwin Smith Papyrus

The earliest evidence of triage was found in the Edwin Smith Papyrus over 3000 years ago in
Ancient Egypt (van Middendorp et al., 2010). In it, he divides patients into three categories:

1. “A medical condition I can heal”

2. “A medical condition I intend to fight with.”

3. “A medical condition that cannot be healed.”

In this triage, category 1 and 2 patients are prioritized over the 3rd category. While the
relevant information used to define the 3rd category is unclear, presumably it was based on
the difficulty of treating the condition which heavily depends on the available resources and
severity of the condition. So, this historical triage system aligns with our definition.
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2.1.2 Modern Emergency Department Triage

Worldwide, there are various triage systems used by hospitals, all aiming to have “patients
receive care in an appropriate and timely manner... limit[ing] their injuries and their compli-
cations.” (Yancey and O’Rourke, 2024) One common system used by emergency departments
is the Emergency Severity Index (ESI) triage algorithm. It divides patients into the following:

• Level 1: Requires immediate life-saving interventions

• Level 2: High risk of deterioration into a life-threatening condition

• Level 3: Stable. Requires 2 or more hospital resources (i.e. lab test, X-rays)

• Level 4: Stable. Requires 1 hospital resource

• Level 5: Stable. No hospital resources needed besides basic medications

In this triage, patients seen are in order of their level, with level 1 being first, and level 5
being last. To categorize patients into levels 1 and 2, nurses check things like vital signs
(pulse, breathing), responsiveness, etc. which fall under the severity of the condition in our
definition. To categorize patients into levels 3, 4, and 5, nurses check the resources needed.
So, this modern-day triage system also matches our definition. Interestingly, the severity of
the condition is considered before the resources needed when deciding prioritization.

2.1.3 Modern Field and Disaster Triage

In a field and disaster triage (i.e. in the setting of a natural disaster or war), there are two
widely popular triage algorithms, START, and SALT (Yancey and O’Rourke, 2024). The
START triage divides patients into the well-known four armband color categories:

• Red (Immediate): Life-threatening injury

• Yellow (Delayed): Major injury, but can be delayed

• Green (Minimal): Minor injury

• Black (Expectant): Presumed dead

In the START triage, patients are treated in order of Red, Yellow, Green, and finally Black.
Categorization is done quickly: Minimal (green) patients are determined first as the patients
who can walk to an injury care site after everyone is instructed to. The remaining patients
are determined using basic vital signs such as respiration and pulse. While this aligns with
our definition of triage, notice only the severity of the condition is considered in this system.
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The SALT triage is quite similar, with a key difference in the categorization of Expectant
(black armband) patients. It asks the question: “Is the patient likely to survive the current
circumstance given the resources available?” (Yancey and O’Rourke, 2024). If no, then the
patient is categorized as Expectant. This means that patients who may not be dead can be
denied treatment. Notice the SALT system considers both severity and resources needed.

2.2 Triage in a Theoretical Framework

Faced with so many different situations requiring triage and different approaches to triage,
we attempt to boil down the problem to some high-level variables, structure, and fairness
principles using some simplifying assumptions. As a starting point, we will use our definition
of triage that we motivated using real-world examples. It can reformulated and simplified
as: A triage is a systematic prioritization of patients based on their condition’s severity, and
the resources needed to treat their condition.

Admittedly, the definitions of severity and resources needed can refined further. For
example, severity can be broken down into two dimensions: time-sensitive conditions that
require immediate attention (i.e. choking), and life-threatening conditions that will likely
kill you (i.e. cancer). Resources needed can be broken down into two dimensions: quantity
needed (i.e. number of nurse hours), and type needed (i.e. common medications v.s. requir-
ing specialized equipment). However, modeling this will be unwieldy, and we will argue that
ignoring these distinctions still aligns with the Field and Disaster triage setting.

2.2.1 Emergency Department v.s. Field and Disaster Triage

While the definition of triage is widely applicable to both emergency departments and field
and disaster triage, the underlying situation we need to model differs greatly.

For the emergency department setting, we have a somewhat predictable inflow of new
patients, and the time-sensitivity of the condition is important due to the various kinds of
patients visiting. Also, hospitals usually have enough resources to treat everyone eventually,
so reducing wait times and having surge capacity are priorities. This strongly suggests that
a multiple time-period model is needed to properly capture the inflow of new patients, how
the severity of the condition evolves over time, the cost of wait times, and unexpected surges.
Also, the types of medical resources are much more varied (medical tests, X-rays, surgeons
available, etc.) so simply considering the quantity of resources may not be sufficient.

However, the Field and Disaster setting is simpler. Typically, there is a one-time appear-
ance of new patients (i.e. immediately after an earthquake), and injuries are similar since
they have the same cause, so time-sensitive and life-threatening conditions often go hand in
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hand. Thus, the time dimension is not as important, and the setting can be modeled as a
one-off event. Also, the resources available tend to be very limited and basic compared to a
hospital, so assuming one homogeneous medical resource is more justifiable. Thus, it seems
like modeling the Field and Disaster setting is far more tractable.

2.2.2 Key Variables

Given our careful consideration and simplifying assumptions, these key variables capture the
definition of triage in the Field and Disaster setting:

• N patients in need of treatment

• t the total number of medical resources available

• si the severity of the medical condition of patient i

• xi the resources needed to cure patient i

We will assume a single period, so a triage algorithm will not necessarily prioritize which
patient receives treatment first, but which patients receive treatment and which do not.
Notice how this sketch of the key variables captures all aspects of our definition of triage.

One thing we will also abstract away from is the cost of obtaining the value of si, and the
accuracy of the value. In reality, these are important considerations, as the START triage
algorithm emphasizes speed over thoroughness, while the ESI is more thorough as it is in
a hospital setting. Modelling the trade-off between obtaining better information (i.e. more
testing and observation) and just going ahead with treating patients could be an interesting
extension of the model. For our discussion, we assume that si is directly observed without
any costs, and is correct (or at least an unbiased estimator of the true severity).

2.2.3 Fairness Principles

This setup has similarities with some well-known problems in economics. Each patient i

needing a certain number of resources xi is like the claims problem. Allocating medical
resources to N patients is like the fair division problem. So we will borrow some ideas from
claims problems and fair division problems for the following principles of a triage algorithm:

• Symmetry: The order of the patients listed in the problem should not matter.

• Pareto Efficient: No one can be treated without foregoing someone else’s treatment.

• Envy-Free: After resources are distributed, someone who started “better off” should
not wish they were someone who started “worse off”.
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Finally, to make a judgment on which outcome for the patients is best over all possible
distributions of resources, we will borrow ideas from cardinal welfare, namely the collective
utility function. We now formalize these key variables and fairness principles.

3 The Simple Triage Problem

3.1 Basic Definitions

Definition 3.1. A Simple Triage Problem has N = {1, 2, ..., n} patients, total number
of resources t > 0, each patient has severity si ∈ (0, 1], and resources needed xi > 0, where∑n

i=1 xi > t. Such a problem can be represented by (t; (s1, s2, ..., sn), (x1, x2, ..., xn))

This definition summarizes our discussion in 2.2.2 Key Variables. The severity si has
the natural interpretation as the probability of death of patient i without treatment. For
example, si = 0.6 means that the patient has a 60% chance of dying. The condition that∑n

i=1 xi > t means more resources are needed than available, like a claims problem.

Definition 3.2. A Solution to a Simple Triage Problem is a rule that assigns for
any Simple Triage Problem (t; (s1, s2, ..., sn), (x1, x2, ..., xn)), a set of cured patients C ⊂
{1, 2, ..., n} such that ∑

i∈C xi ≤ t.

Definition 3.3. The Outcome of a Solution to a Simple Triage Problem, is the list O =
(s′

1, s′
2, ..., s′

n) where s′
i = si for all i /∈ C, and s′

i = 0 for all i ∈ C.

Note that a Solution to a Simple Triage Problem does not only require choosing a set of
cured patients C for one problem but a rule for any Simple Triage Problem. However, the
Outcome of a Solution to a Simple Triage Problem corresponds to applying that solution to
a specific Simple Triage Problem. This outcome can be thought of as the actual mortality
probabilities of the patients after curing the patients prescribed by the solution.

One important implication of this definition is that one cannot partially cure a patient,
one must either completely cure the patient by fulfilling their xi, or leave them alone. While
this may seem like a strong assumption, in some medical situations, the full course of treat-
ment is required for positive results. One may also conceivably extend this model to include
a treatment function s′

i = f(si, xi, yi) such as f(si, xi, yi) = si −si
yi

xi
, where yi is the resources

given to patient i. However, we will focus our attention on this simpler model.

3.2 Axioms of Solutions

With these definitions, we formally define the Fairness Principles we introduced in 2.2.3.
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For the following, let (t; (s1, s2, ..., sn), (x1, x2, ..., xn)) be any Simple Triage Problem. We
have a Solution to a Simple Triage Problem that assigns C to this problem, resulting in
Outcome O. A Solution to a Simple Triage Problem can satisfy the following axioms:

Definition 3.4 (Pareto Efficiency Axiom). For all j /∈ C, ∑
i∈C xi + xj > t.

This axiom means that under the solution, one cannot treat another person without
exceeding the available resources. Thus, no patient can be made better off without making
another patient worse off, which is Pareto Efficiency in the usual sense.

Definition 3.5 (Symmetry Axiom). For any new problem defined by reordering (s1, s2, ..., sn)
and (x1, x2, ..., xn) in the same way, the solution C applied to this new problem yields outcome
O = (s′

1, s′
2, ..., s′

n) reordered in the same way.

This axiom means that under the solution, the order in which the patients are listed does
not affect the patients’ outcomes in reality. Like claims problems, this implies an axiom like
Equal Treatment of Equals. The idea of an Envy-Free Test generalizes in two ways:

Definition 3.6 (Equal Severity Envy-Free Test). Assume si = sj. If xi < xj, then s′
i ≤ s′

j

This axiom means that under the solution, if two patients have the same severity, but
patient i requires fewer resources than patient j, then patient i’s severity outcome should
be at least as good as patient j’s. One reason why we might want to satisfy this axiom is
in situations where patients can demand more resources than needed. We do not want to
incentivize patients to demand more medical resources in hopes of a better outcome.

Definition 3.7 (Equal Resource Envy-Free Test). Assume xi = xj. If si < sj, then s′
i ≤ s′

j

This axiom means that under this solution, if two patients require the same resources,
but patient i’s severity is lower than patient j, then patient i’s severity outcome should be
at least as good as patient j’s. One reason why we might want to satisfy this axiom is
in situations where patients can feign severity. We do not want to incentivize patients to
pretend to be more sick than they actually are in hopes of a better outcome.

3.3 Solutions to A Simple Triage Problem

For the following section, let (t; (s1, s2, ..., sn), (x1, x2, ..., xn)) be any Simple Triage Problem.
To find the best Solution to a Simple Triage Problem, one must naturally consider the
Outcome of applying the Solution. But how does society decide which outcome is best? One
approach is to use Collective Utility Functions over the possible Outcomes.
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3.3.1 Utilitarian Solution

If our goal is to maximize the expected number of lives saved, then we should evaluate the
outcome O = (s′

1, s′
2, ..., s′

n) using the Utilitarian Collective Utility Function:

Wutil(s′
1, s′

2, ..., s′
n) = −(s′

1 + s′
2 + ... + s′

n)

The negative is since higher severity s′
i is bad. The Utilitarian Solution prescribes:

Cutil := arg max
C⊂{1,...,n}

Wutil(s′
1, s′

2, ..., s′
n)

However, this definition is quite cumbersome, as it requires one to check all possible subsets
of patients to find the best one. Instead, we propose the following algorithm:

Definition 3.8 (Utilitarian Algorithm Solution). For each patient i, compute the cost-
effectiveness ratio ri := xi

si
. Order patients in a list from lowest to highest ri (most cost-

effective to least cost-effective), and add them to the cured patient set C in that order. If
there are not enough resources to treat patient j, treat patient j + 1, until exhausting the list.

Proposition 3.1. The Utilitarian Algorithm Solution is equivalent to the Utilitarian Solution
under certain assumptions.

We will not prove our propositions here, but a heuristic argument is that to maximize
the expected number of lives saved, we need to put our resources into the most cost-effective
cases. The assumptions we need are to handle edge cases where we do not have resources to
cure patient j but do for some later patient k > j in the list. For example, if one can partly
cure patient j for a proportional reduction in their severity outcome s′

j then it is enough.

Proposition 3.2. The Utilitarian Algorithm Solution satisfies the Pareto Efficiency Axiom,
Symmetry Axiom (under conditions), and Equal Severity Envy-Free Test. It violates the
Equal Resource Envy-Free Test.

The Pareto Efficiency follows since the Utilitarian Algorithm Solution exhausts the list
of patients. Symmetry follows since we order the list by cost-effectiveness ratio ri so the
original order of the patients in the problem does not matter (except in the case of two
patients having the same ri’s, which the conditions can handle). Equal Severity Envy-Free
follows since if xi < xj, then ri < rj, which means i has priority over j to be cured, so
s′

i ≤ s′
j. There are many counter-examples to violate Equal Resource Envy-free.
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3.3.2 Egalitarian Solution

If our goal is to equalize the chances of everyone’s survival as much as possible, then we
should evaluate the set O = (s′

1, s′
2, ..., s′

n) using the Leximin Collective Utility Function:

Wegal(s′
1, s′

2, ..., s′
n) = Leximin(−s′

1, −s′
2, ..., −s′

n)

Again, the negative is since higher severity s′
i is bad. The Egalitarian Solution prescribes:

Cegal := arg max
C⊂{1,...,n}

Wegal(s′
1, s′

2, ..., s′
n)

Again, we propose an equivalent algorithm that is easier to compute:

Definition 3.9 (Egalitarian Algorithm Solution). Order patients in a list from highest to
lowest si (most severe condition to least severe), and add them to the cured patient set C

in that order. If there are not enough resources to cure patient j, cure patient j + 1, until
exhausting the list.

The justification for each part of the following proposition is similar to Proposition 3.1
and 3.2, or just very straightforward, so its argument is omitted for the sake of brevity.

Proposition 3.3. The Egalitarian Algorithm Solution is equivalent to the Egalitarian So-
lution. The algorithm satisfies the Pareto Efficiency Axiom, Symmetry Axiom, and Equal
Severity Envy-Free Test (under conditions), and violates the Equal-Resource Envy-Free Test.

3.3.3 Other Algorithms

Some other algorithmic solutions that are not derived from a Collective Utility Function
are also reasonable. Similar to the Utilitarian and Egalitarian algorithms, the following
algorithms will order the patients in a list and treat them in that order. Assume that once
there are not enough resources to treat patient j in the list, then there are not enough
resources to treat all of the remaining patients j + 1, j + 2, ..., n (i.e. the Pareto Axiom
is automatically satisfied). While this assumption can be easily forgone by using a similar
method as the previous two algorithms, this assumption will simplify our definitions and
yield nice graphs to analyze.

Definition 3.10 (Order of Resource Algorithm Solution). Order patients in a list from lowest
to highest xi, and add them to cured patient set C in that order until resources deplete.

The picture below summarizes how the Order of Resource Algorithm works. The ESI-Like
algorithm name is inspired by the Emergency Severity Index algorithm presented in 2.1.2,

9



where level 3-5 patients were treated in the order of whoever needed the most resources. The
ESI-Like Algorithm is simply Definition 3.10 but the list is from highest to lowest xi.

Definition 3.11 (Order of Severity Algorithm Solution). Order patients in a list from lowest
to highest si, and add them to cured patient set C in that order until resources deplete.

The picture below summarizes how the Order of Severity Algorithm works. Notice how
the Egalitarian Algorithm is in some sense the opposite of the Order of Severity Algorithm.
Also, the way the past two diagrams are presented is suggestive of a new perspective. For
example, the Order of Severity can be interpreted as we first determine a threshold of severity
(vertical blue line) such that we have the resources to cure everyone with severity below the
threshold. This is reminiscent of the SALT Triage introduced in 2.1.3, where the Expectant
(black armband) were not treated because their injury was too severe given the resources
available.

We have the following proposition, and the argument is similar to previous propositions.

Proposition 3.4. The Order of Resource and Order of Severity Algorithm Solutions satisfies
the Pareto Efficiency Axiom, Symmetry Axiom, Equal Severity Envy-Free Test, and the
Equal-Resource Envy-Free Test (under conditions).

Is there a way to somehow combine the Order of Resource and Order of Severity Algo-
rithms? Yes, there is: we can arrange the patients in 2D space and find some kind of line to
split the patients into two groups. One natural line to decide on is the cost-effectiveness of
treating a patient (r = x

s
), and this is simply the Utilitarian Algorithm as shown below.
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3.3.4 Resource-Severity Correlation Property

One implicit assumption we have been making throughout our discussion is that there is
no relationship between the severity and resources needed. However, in practice, almost
certainly these two variables are positively correlated (more severe conditions require more
resources). So let us assume that these two variables are related by the following equation:

xi = f(si) + εi

where f is an increasing continuous function, εi is some Gaussian noise. If ε ≡ 0, we have an
interesting result connecting all parts of our discussion so far into the following proposition.

Proposition 3.5 (Resource-Severity Correlation Property). Consider a Simple Triage Prob-
lem, where xi = f(si) for some increasing continuous function f . Under certain conditions1,
the following are true: If f is concave, then the Utilitarian Algorithm is equivalent to the ESI-
like and Egalitarian Algorithms. If f is convex, then the Utilitarian Algorithm is equivalent
to the Order of Resource and Order of Severity Algorithms.

This proposition is demonstrated in the graph below. Because of the strong ε ≡ 0
assumption, it may seem like this property is of limited practical use. However, relaxing
the assumption would only weaken the equivalencies to be “roughly equivalent”. This result
implies that as long as we can estimate the concavity of the correlation between the xi

and si the Utilitarian Algorithm which requires two pieces of information xi and si, can be
approximated by only considering only one of xi or si that the Egalitarian, ESI-like, Order
of Severity, and Order of Resource Algorithms require.

1We require conditions to address the edge case of satisfying the Pareto Efficiency Axiom as usual.
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4 Conclusion

So, we will now use all our propositions to deduce what triage system is fairest. Firstly, by
Propositions 3.1 and 3.3, we can reduce our list of candidates of formally defined solutions
to four: the Utilitarian, Egalitarian, Order of Severity, and Order of Resource Algorithms.

If we were to require our solution to satisfy all our axioms (Definitions 3.4 - 3.7), then
only the Order of Resource and Order of Severity remain by Proposition 3.4. But something
is unsettling with these two approaches: we are only curing those who are the most well off
to begin with, either in terms of the least resources needed or in the least severe condition.

So perhaps we should be more Egalitarian in our approach. However, the Egalitarian
Algorithm falls flat in the following scenario. Suppose there was one person who certainly
going to die and one million people who all had a ten percent chance of dying. We can
use all our resources to save one person, or divide it up and protect the one million. The
Egalitarian Algorithm will require us to save one person for certain, and let the one million
people take the gamble, almost certainly resulting in more than one death.

So what about being Utilitarian? Proposition 3.2. tells us that it violates the Equal
Resource Envy-Free Test, but recall one reason why we might care about this axiom is to
prevent patients from pretending to be sicker to receive a better outcome. If this is not a
concern, then saving the most number of lives possible is an easy idea to get behind, but must
be applied carefully since a common criticism of utilitarianism in the medical context is that
can be discriminatory (Okorie, 2019). In emergencies with limited time, where it is costly
to assess both the patients’ severity and the resources needed, we then have Proposition 3.5.
If the correlation between severity and resources needed is convex, then indeed we can just
use the Order of Severity or Order of Resource methods to achieve the Utilitarian outcome.
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